Emergency Slope Repair using Reinforced Soil
Gill, Massachusetts

Jonathan L. Ernst, P.E.
Geosciences Testing and Research, Inc. (GTR)
Presentation Overview

1. Extreme Weather in Massachusetts
2. Project Location and Overview
3. Drone Survey
4. Temporary Roadway Support
5. Geotechnical Information
6. Reinforced Slope Design
7. Reinforced Slope Construction
8. Automated Monitoring
9. Project Timeline

Photo Provided by Northern Construction Services
Extreme Weather in Massachusetts

2.76 inches of rain in 3 hours per NOAA

Gill, Massachusetts Police Facebook Page
Project Location
- Route 2/Mohawk Trail in Gill, Massachusetts, located adjacent to the Turner Falls Dam and Turner Falls-Gill Bridge
- Route 2 is a major integral trade route that runs East and West across Massachusetts

Project Team
- Contractor - Northern Construction Services
- Engineer – Geosciences Testing and Research, Inc. (GTR)
- Owner – Massachusetts Department of Transportation (MassDOT)
Initial Drone Survey

- Drone Survey using LiDar
- Slope cross sections developed from drone survey
- Survey compared to previous recent surveys of existing slope
- Slope failure approximately 75 foot height in elevation
Temporary Roadway Support

Required for:

• Stop and reduce risk of further undermining roadway due further erosion at slope failure
• Reduce soil and roadway/traffic surcharge at top of remaining slope that would cause further slope failure
• Location of SOE allowed for traffic barrier and 2 way traffic along Route 2 at the completion of the SOE
Temporary Roadway Support Analysis:

- Soils assumed for analysis based on field observations of failed slope and based on location
- Considered reduced passive resistance due to remaining slope in front of support
- Considered HS-20 loading and construction surcharges for traffic above SOE
- Rock not modeled – unknown depth below micropile location
Temporary Roadway Support

- Single lane traffic during SOE installation
- Rock was encountered shallower than expected and micropiles were drilled a minimum of 5 feet into rock for further support
- Geotechnical Information Gathered during Drilling
 - Depth to rock
 - Soil types and density approximated from drilling action and spoils

Photo Provided by Phoenix Foundation Co., Inc.
Temporary Roadway Support

Photo Provided by Phoenix Foundation Co., Inc.
Geotechnical Information

- Drilling action/returns
- Visible soil observations used to confirm soil parameters used in design
- Temporary Roadway Support Performance
Geotechnical Information also reviewed from recent Bridge Project
Bridge No. G-04-003 Route 2 over Fall River - Gill-Greenfield, MA
Reinforced Slope Design

Initial Reinforced Slope Concept

- Rock Slope placed on backfilled gravel borrow backfill (Armor Stone down to 1.5"-crushed stone)
- Shear pins used to pin slope boulder toe (if required)
Final Reinforced Slope Concept

- Boulder Fill Base
- Shear pins used to pin slope boulder toe (if required)
- Reinforce soil slope above boulder fill base
- Drainage to implemented behind reinforce soil slope
Global Stability Analyses using Slope Reinforcement and Boulder Fill at base
(Normal Conditions – Left. Seismic Condition – Right)
Reinforced Slope Design

Slope Repair Limits – Plan View
Reinforced Slope Design

- Final slope design consisted of Boulder Fill ranging in size from 500 lb to 8 tons topped by a 2 foot thick 1.5”- crushed stone mat
- Reinforced slope above boulder fill consisted of MassDOT Gravel Borrow with Miragrid 2XT
- Reinforce slope was wrapped in Modified Rock Fill
- The bottom of slope elevation was required to be Elevation +150 ft based on discussions with MassDOT due to environmental constraints
Reinforced Slope Construction
Reinforced Slope Construction
Reinforced Slope Construction
Reinforced Slope Construction

Materials Amounts Used

- 3,000 cubic yards of muck and earth excavation
- 5,000 tons of boulders
- 2,300 square yards of Mechanically stabilized earth
- 5,300 cubic yards of gravel borrow
- 1200 tons of armored riprap protection – native rock used to promote vegetation
Automated Monitoring
Project Timeline

Timeline

- **July 21, 2023**
 - Major Rain Event Causing Slope Failure
 - Roadway Closed

- **July 22-24, 2023**
 - Northern Construction and GTR immediately in emergency discussions with MassDOT

- **July 25-30, 2023**
 - Temporary Roadway Support Designed.
 - Initial slope concepts presented to MassDOT

- **July 31-August 20, 2023**
 - Temporary Roadway Support Installed and implemented to re-open roadway

- **August 22,2023-October 26, 2023**
 - Slope Repair Commenced

Photo Provided by Northern Construction Services
Completion of Construction
THANKS FOR WATCHING

QUESTIONS?