Accessible Bus Stops in the Presence of Bike Lanes

Dr. Eleni Christofa, Yu-Min (Thomas) Yang
University of Massachusetts Amherst
What is a Floating Bus Stop? Why do we need it?

- **Conventional Bus Stop**
- **No Platform Bus Stop**
 (Bike lane is adjacent to the curb)
- **Partial-Width Bus Stop**
 (Platform width < 8 ft)
- **Full-Width Bus Stop**
 (Platform width ≥ 8 ft)
Introduction of Floating Bus Stops

Advantages
- Avoid conflicts between buses and bicycles
- Raised platform for bus riders to board or alight

Disadvantages
- Causing conflicts between bicyclists and bus riders
- Accessibility concerns

Research Objective
- Investigate bicyclists’ and bus riders' behavior and interactions
- Propose design improvements mitigate conflicts
Current Design Guidelines and Studies

Suggestions from Current Design Guidelines

- Platform width: 8’-10’
- Min bike lane width: 4’-5’
- Accessible boarding area: 4’x4’-5’x8’

- Signages
- Rails/Fences
Focus Groups

- 3 groups with 21 participants
- Include visually impaired, hearing impaired, and individuals with mobility impairments
Professional Communities and City Interviews

- 5 responses from Association of Pedestrian and Bicycle Professionals
- 4 cities (Amsterdam, Montreal, Toronto, Montgomery County, MD)

- Bike lane
- Narrow bike lane
- Channelized space
- Rumble strip

- Crosswalk
- Tactile Guidance strip
- Signal control

- Bus stop sign pole
- On the curb or close to shelter
- Platform
 - 5-8 ft wide
- Shelter
 - On the platform
Floating bus stop inventory

- 56 bus stops in the MBTA region
 - Inventoried by field investigation and online maps
Study Sites

- Broadway opp Beacham St
- Broadway @ Horizon Way
- Somerville Ave @ Stone Ave
- Mass. Ave opp Christian Science Ctr
- Washington St @ Walnut St
Behavior and Conflict Analysis

• 5 bus stops (Boston, Brookline, Everett*2, Somerville)
• LiDAR and 360° video camera are utilized for data collection
 ➢ 12 hours for 2 stops and 4 hours for 3 stops
Behavior and Conflict Analysis

Trajectory analysis

- LiDAR captures trajectories
- Mode classification for all types of road users
- Analyze the interactions between different road users

Video analysis

- Review manually and identify the event of interests
- Validate trajectory processing findings
Does fencing slow down cyclists?

Average Speed
11.1 mph

Average Speed
12.1 mph

Somerville Ave @ Stone Ave

U.S. Department of Transportation
Federal Highway Administration
Preliminary Design Recommendations

Safety Principles

• Maximize separation
• Speed management and situational awareness for bicyclists

Stronger speed management is needed when the separation is weak

Bus Stop Types

• Strong preference for full-width platform
• Stop bikes when the bus door is opened at No Platform Bus Stop

Somerville Ave @ Stone Ave

Copenhagen, Denmark
Toronto, Canada
Taipei, Taiwan
Preliminary Design Recommendations

Bike Lanes
- Speed management and situation awareness

Wayfinding
- Enhance accessibility for all users

- Channelized space
- Align crosswalk, tactile, and boarding area

Commonwealth Ave & University Rd

Hampshire St @ Cambridge St

Montgomery County, MD

Silver Spring, MD

Secondary bus stop sign pole
Next Steps

• Continue trajectory analysis and cross-validation with video recordings
• Integrate the results of behavior and conflict analysis into design recommendations
Acknowledgment

Dr. Eleni Christofa
UMass Amherst
Associate Professor

Dr. Chengbo Ai
UMass Amherst
Assistant Professor

Dr. Peter Furth
Northeastern University
Professor

Dewan Tanvir Ahammed
UMass Amherst
Graduate Researcher

Nathan David Obeng-Amoako
Northeastern University
Graduate Researcher

massDOT
Massachusetts Department of Transportation

U.S. Department of Transportation
Federal Highway Administration
Thank you!
Questions/Comments?