Saving Bridge Piers with Carbon Fiber Wrap and Laminate
Saving Bridge Piers with Carbon Fiber Wrap and Laminate
Purpose of the Project

- Overall investment in bridge understanding the use in the 495/90 interchange
- Deck Condition
- Steel Condition (Coatings and Fatigue)
- Lane Use and Traffic Volumes
- Substructure Condition
Project Partners

MassDOT
 Mohammed Nabulsi, P.E. – District 3 Bridge Engineer

Greenman-Pedersen, Inc.
 Bridge design
 Construction inspection

Carbon Wrap Solutions
 Carbon fiber design
 Installation contractor
Existing Condition

- Pier Deterioration
- Reinforcing Steel Deterioration
- Spalling, Cracking, Delamination
Inspection/Evaluation Process

• Existing Records Review
 • Plans, Inspection Reports, Inventory Photographs
• Visual Examination
• Mechanical Sounding
• Chloride Ion Testing
 • Above thresholds for active reinforcing steel corrosion
Carbon Wrap Solution

- Restore Concrete Section
- Strengthen Pier Cap
- Moisture and Chloride Barrier
- Economical
- Visually Appealing
Design Process

- Carbon Wrap Solutions – vendor design
- Designer verification
- Independent of pier reinforcing
- Columns assumed adequate
- No footing modification
Installation

• Concrete removal and patching
• Epoxy based concrete repair
Installation

- Concrete surface preparation
- Bonding compound
Installation

• Laminate
 • Horizontal Pier Face – “top bars”
 • Underside of Pier Cap – “bottom bars”
Installation

• Fabric Wrap
 • Cap – Shear reinforcing
 • Columns – Confinement
 • Not utilized for this project
Installation

• Fabric Wrap
 • Cap – Shear reinforcing
 • Columns – Confinement
 • Not utilized for this project
Installation

• Surface treatment
 • Elastomeric over Carbon Fiber
 • Acrylic paint after deck replacement
Construction Inspection

- Lack of defined industry procedures
- Bond testing
- Mechanical Sounding to identify voids
- GPR Verification of “hollow” sounding area
- Void defect repair – epoxy injection
- Debonding concern
Monitoring Program

- Moisture monitoring
 - Linear polarization readings
 - Six locations in each pier (3 on each pier face)

- Temperature
 - Internal and external

- Dew Point
 - For correlation to humidity

- MassDOT regular inspection cycle (24 months)
Monitoring Program
Monitoring Program - Results

• Moisture monitoring
 • Favorable trend to reduction – hard to verify
 • Existing saturated concrete – 99.9% readings in multiple probes
 • Limited migration of moisture from “wet” to “dry” locations

• Temperature Variations
 • Concrete does react – but much slower than ambient air condition

• Humidity Variations
 • Day to day variations – generally 60% to 75% year round

• Lack of moisture at weep holes
 • For correlation to humidity
Monitoring Program - Results

• Supplemental Visual Inspection

• Lack of moisture at weep holes
 • No significant migration in concrete or new moisture

• Delamination
 • Generally solid
 • Delamination at underside of pier cap – continue to monitor

• Columns
 • Solid – no noticeable hollow sounding area
First Post Freeze Thaw Inspection

• Reflective cracking and rust colored bleeding
• Discontinuous at laminates
• Possible differential thermal expansion of epoxy concrete patch material and original concrete
• Additional fiber wrap of pier caps
• No future cracking
First Post Freeze Thaw Inspection
Conclusions

- Economical Solution
 - $400,000 total pier repair cost with no traffic impacts
 - Compared to multiple million dollar replacement with traffic impacts

- Epoxy concrete performance
 - Difficult to verify due to carbon fiber wrap

- Chloride protection
 - Barrier to road salts

- Possible moisture protection
 - Trapped moisture still diffusing and migrating
 - No new moisture in system
 - Corrosion of reinforcing steel on going – but reduced
Saving Bridge Piers with Carbon Fiber Wrap and Laminate