Developing Dedicated Bus Lane Screening Criteria in Baltimore, MD
Overview

- Background
- Peer Agency Review
- Literature Review
- Selected Screening Criteria
- Preliminary and Detailed Screening
- Full Analysis
- Results
- Lessons Learned
BaltimoreLink –
Overhaul of MDOT MTA Bus Network

- **Improve** service quality and reliability
- **Maximize** access to high-frequency transit
- **Strengthen** connections between the MTA’s bus and rail routes
- **Align** the network with existing and emerging job centers
- **Involve** riders, employees, communities, and elected officials in the planning process
BaltimoreLink Includes Transitways

- BaltimoreLink was announced by Gov. Hogan in October 2015
- Project included $6M for Dedicated Bus Lanes as one component of the $135M budget
- Baltimore City installed bus/bike lanes on Pratt and Lombard Streets in 2009 with limited marking and enforcement
Peer Agency Review

Boston – Washington Street

NYC – 1st Avenue

Seattle – Wall Street

Washington, D.C. – Georgia Ave. NW

San Francisco – O'Farrell Street

Chicago – Clinton Street

massDOT
Massachusetts Department of Transportation
Literature Review

- Performance measures to assess mobility, accessibility, and design adequacy
- No clear consensus on priority screening measures for corridor selection
- Clear screening considerations
 - Frequency of bus service
 - Person throughput
 - Average speed and reliability
 - Automobile delay
Selected Screening Criteria

• Mobility
 • Person throughput
 • Person delay
 • Volume/frequency
 • Passengers per hour
 • Average speed
 • Auto delay and v/c

• Access
 • Parking and Loading Impacts
 • Population near routes
 • Transit dependent population near routes
 • Job Accessibility
 • Connectivity/Transfers
 • Emergency Routes
 • Freight Routes

• Design Adequacy
 • Lane width
 • Right turns at intersections
Study Corridors

- 25 Streets
 - High frequency
 - Higher levels of delay
 - 14 operate as one-way couplets in downtown
Preliminary Screening

- **Bus Frequency**
 - Number of buses per hour
 - Includes
 - Updated BaltimoreLink Network
 - MTA Regional Commuter
 - Charm City Circulator
 - Local University Shuttles (UMB, UB, JHU, MICA, Collegetown)
Preliminary Screening

• Bus Frequency
 – At least 18 buses/hour in peak periods
 – Some downtown streets experience 40+ buses per hour
Detailed Screening

- Person Throughput
 - Number of people per lane per hour
 - **Auto**: Average regional occupancy per vehicle x turning movement count volumes, distributed across lanes
 - **Bus**: average peak period ridership x frequency in single lane
Detailed Screening

• Person Throughput
 – **Number of people traveling in dedicated bus lane must carry ≥80% of adjacent auto lane**
 – Most downtown streets carried significantly more people per lane by bus than car
 – Several downtown streets included peak-period parking restrictions
Detailed Screening

- Corridors Recommended for Full Analysis
- 9 streets
Full Analysis
(i.e., How do we make this work?)

- Remaining 9 streets (4 corridors) evaluated using ALL original measures
- Key measures
 - Existing Curbside Parking Restrictions
 - Traffic Delay and volume-to-capacity ratio
 - Design constraints
 - Other
Full Analysis
(i.e., How do we make this work?)

• Parking
 – AM and PM parking restrictions
 – AM parking restrictions
 – PM parking restrictions
 – Full-time parking
 – Loading and unloading
 – Special event parking
Full Analysis
(i.e., How do we make this work?)

• Traffic operations
 – Queuing impacts on intersections
 – Accommodating heavy right-turning volumes
 – Minimizing delay
 – Traffic diversion
 – Signal timing
Full Analysis
(i.e., How do we make this work?)

• Design constraints
 – Available lane widths
 – Overlap with bicycle network
 – Pavement conditions
Segments Recommended for Design

- Full-time segments largely confined to the CBD
- Portions of Pratt & Lombard Streets implemented early by City in July/August 2016
- Other segments cut based on traffic operations & lane transitions
Final Implementation

- **Charles St**: PM peak period only (no red paint)
- **St. Paul St**: Combination of peak period, curbside, and offset based on several factors
- **Baltimore St**: Two blocks of Peak-Only Lanes based on existing permits
- **Curbside parking modifications throughout**
Before/After Evaluation

- Measuring impacts on:
 - Transit reliability, speed, on-time performance
 - Traffic congestion
 - Bus operators
 - Public perception
 - Enforcement
Before/After Evaluation

<table>
<thead>
<tr>
<th>Key Performance Indicator</th>
<th>Unit of Measure</th>
<th>Data Source</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus On-time Performance</td>
<td>Percentage of buses on time as defined in MTA service standards</td>
<td>MTA APC reports</td>
<td></td>
</tr>
<tr>
<td>Bus travel time</td>
<td>Average miles per hour</td>
<td>MTA APC reports</td>
<td></td>
</tr>
<tr>
<td>General purpose travel time</td>
<td>Average miles per hour</td>
<td>Data Collection</td>
<td>Travel time runs along each corridor during peak periods</td>
</tr>
<tr>
<td>Ridership</td>
<td>Total daily passenger boardings at selected stops</td>
<td>MTA APC reports</td>
<td>Select stops with reasonably similar LOS before and after BaltimoreLink route changes</td>
</tr>
<tr>
<td>Illegal motor vehicle travel within dedicated bus lanes</td>
<td>Total number of private vehicles issued notices for violating lane restrictions during reporting period</td>
<td>Baltimore Police Department and MTA Police reports</td>
<td>Only after data Obtain from select locations, one or two blocks along each corridor</td>
</tr>
<tr>
<td>Crashes</td>
<td>Total number of crashes of all types occurring in dedicated lane during reporting period</td>
<td>Baltimore City Police reports</td>
<td>Side swipes, rear ends, etc.</td>
</tr>
<tr>
<td>Traffic volumes</td>
<td>Vehicles per hour</td>
<td>Data Collection</td>
<td>Traffic counts by video at select mid-block locations, one or two blocks along each corridor. This provides necessary count data but also allows for video review of a corridor so that enforcement, lane usage, etc. can be observed.</td>
</tr>
<tr>
<td>Illegal parking</td>
<td>Total number of parking infractions in select locations during reporting period</td>
<td>Baltimore City Department of Transportation</td>
<td>Only after data Obtain from select locations, one or two blocks along each corridor</td>
</tr>
</tbody>
</table>
Lessons Learned

• Data-driven decision making can work
• Ongoing coordination between City DOT and State Transit Agency was ESSENTIAL
• Person throughput is extremely valuable to change typical narratives and bridge divides
Opportunities for Future Research

• Effectiveness of Red Dedicated Bus Lanes
• Bicycle Utilization of Dedicated Bus Lanes and Impacts on Bus Operations
• Strategies for Effective Enforcement
Adam Vest, P.E., PTOE
Associate Engineer
Kittelson & Associates, Inc.
601 Walnut Street, 1200W
Philadelphia, PA 19106
avest@kittelson.com
410-524-9415 (office)
443-253-0595 (mobile)

Patrick J. McMahon, AICP
Senior Planner
MDOT MTA Office of Planning, Project Development Division
6 St. Paul Street, 9th Floor
Baltimore, MD 21202
pmcmahon@mta.maryland.gov
410-767-3767 (office)
410-599-5123 (mobile)